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microchannel using scanning microscopic particle tracking velocimetry (μPTV). The objective 

Saffar, Yeganeh, David Nobes, and Reza Sabbagh.” Investigating the Flow Structure of Dean 

Refinement”; 



devices are used in different applications for particle sorting [1], 

encapsulation [2], and micro-mixing [3]. Among different geometries, curved channels are 

employed in the design of most microfluidic devices [4]. The geometry and flow conditions, such 

as the curvature radius and Reynolds number within these curved channels can produce two or 

more counter-rotating vortices due to the generated centrifugal force in the bend. These so-called 

Dean vortices [5] can affect the performance of the microfluidic devices, for instance, by changing 

the equilibrium position of the particles and enhancing the mixing index [5][6]. For every 

application, there is an optimum working window that depends on the properties of the Dean 

vortices [6]. Understanding the flow structure and properties of the Dean vortices provides 

important information for determining the optimum working window to improve the performance 

of microfluidic devices [6].

In order to determine the flow structure and calculate the velocity field of a flow domain in a 

three-dimensional flow geometry, there are several 3D optical velocimetry methods such as 

defocused particle image/tracking velocimetry (PIV/PTV) [7], tomographic PIV/PTV [8] and 

scanning PIV/PTV [9][10]. There are few experiments on 3D visualization of the flow structures 

in a curved microchannel by applying optical methods and these include holographic PTV [11] 

and confocal microscopy [6]. However, they do not provide enough three-dimensional quantitative 

information about the flow domain to study the Dean vortices [6][11].

The aim of this work is to apply an enhanced 3D micro-shadowgraph particle tracking 

velocimetry (3D-µSPTV) to study the 3D flow structures inside a curved microchannel. Different 

planes in the channel depth are scanned to determine the in-plane velocity field. Using a 



tessellation approach, the calculated sparse velocity vectors from µPTV obtained in each plane are 

mapped to a high-resolution triangular mesh. This refines the velocity data near the curved edges 

of the channel. The resultant velocity field is used to calculate the out-of-plane velocity component 

by applying the continuity equation and solving it leading to the determination of the 3 components 

of the flow velocity

A schematic of the experimental setup used to apply 3D-µPTV to investigate Dean vortices at 

the microscale is shown in (a). A high-speed camera is used to capture the seeding 

particles in the curved region of a microchannel flow. This camera is mounted on a micro-stage 

with the minimum displacement of 10 µm and moves in the ݖ direction to scan the depth of the 

channel. A compact high intensity LED light (SL191, Advanced Illumination) is utilized as the 

backlight illuminator to visualize the motion of particles in a shadowgraph configuration. Tracer 

particles used for this purpose are 2 µm polymer beads. A programmable syringe pump (PHD4400, 

Harvard Apparatus) is used to set the flow rate using water as the working fluid. 

The microfluidic chip shown in (b) is designed and built using an additive 

manufacturing technique. The channel has a square cross section with the width 𝑑 = 2 mm and 

radius of curvature, ܴ ௖ = 3 mm. Inlet and outlet channels are considered to be long enough (greater 

than 10 × d) to eliminate the effect of inlet and outlet joints. The test cell is fabricated in 3 different 

layers including the top window (optical window layer), a seal and the main flow channel. The 

optical window layer is built using a laser cutter out of an acrylic sheet with a thickness of 

6.35 mm. A silicone sheet with Shore A hardness of 60±5 and thickness of 0.5 = ݐ mm is 

implemented as the sealing layer between the optical window and the main flow channel. The main 



flow channel which contains support connections to the optical table, connections to the flow 

source via a printed Luer connection and the flow channel, is printed using an SLA 3D printer 

(Form 3, FormLab Inc.) with the semi-transparent resin. To improve the surface finish, the main 

device is printed at the highest resolution setting, 25 µm printing layer thickness. The field of view 

captured by the camera is also shown and highlighted by light blue in (b).



[13]



ݖ
certain flow conditions [12]



ܵ1−௡∆ݐ 1ݖ = 2ݖ0 𝑑ݐ
ݐ∆

such as 

the pressure distribution [13]. A structured/rectangular grid reduces the calculation expense. 

However, it is typically applied to simple geometries where the geometry does not reduce the grid 

quality [13]. For cases with curvature, moving boundaries or complex geometries such as a curved 

channel in a microfluidic device, producing a high-quality mesh is more challenging. To overcome 



this issue, a tessellation approach can be used. This approach maps the dispersed PTV velocity 

data onto an optimized high quality triangular node structure [13][14]

ℎ௠௔௫ ≤ 2 × ℎ௠௜௡ The mesh size and the node distribution depend 

on the geometry of the channel and flow conditions [13]. The Delaunay triangulation algorithm 

[13] used in this approach adjusts itself to the proper position in order 
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𝑑 = 2 ܴ௖ = 3



low flow rates where there is no secondary flow motion, the pressure near the outer wall is 

higher than the inner wall [15]. As a result, the maximum velocity location shifts towards the inner 

wall [15]



(μPTV) for three
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Across the range of Reynolds numbers studied (3.5 ≤ Re ≤ 7), droplet deformation and lateral 
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A detailed quantitative analysis of the device’s separation efficiency across various flow 

is enriched with larger CTC clusters, demonstrating the device’s ability to perform size
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Micro-hydrocyclones (micro-HC), miniaturized derivatives of conventional hydrocyclones, 

have recently attracted attention for biological and biomedical applications, particularly for label-

free cell and particle separation. Their operation relies on tangentially introduced flow to generate 

a swirling motion, which produces centrifugal forces that direct larger particles toward the outer 

wall and smaller particles toward the central vortex . The separated fractions are discharged 

through distinct underflow and overflow outlets. These devices retain key advantages of their 

macroscale counterparts, including compactness, absence of moving parts, and ease of integration 

into microfluidic platforms, while enabling precise control and scalability suitable for emerging 

applications such as rare cell isolation and diagnostic sample preparation. 

The miniaturization of hydrocyclones into microfluidic platforms enables their unique 

advantage in biomedical and analytical applications where precise and high-throughput handling 

of sample volumes is required. Micro-hydrocyclones facilitate passive, label-free separation, 

making them particularly attractive for size-based sorting of cells, beads, or biomolecules in lab-

on-a-chip systems [3]. However, the microscale operation introduces fundamental changes in fluid 

behavior which is yet to be fully understood. As a result, the design and performance of micro-

hydrocyclones must be carefully tailored to the low Reynolds number regime characteristic of 

microfluidic flows [4].

A limited number of studies have evaluated micro and mini hydrocyclones performance in 

separating microplastics [5], offshore solid-liquid mixtures [6], swirl focusing for cells and 

suspended cell cultures [3]. These studies have examined the impact of factors such as feed 

concentration, inlet velocity, and hydrocyclone geometry on separation efficiency and pressure 



distribution. Some have incorporated computational fluid dynamics (CFD) to analyze internal flow 

structures and derive corrections for separation size [6] while others have explored removal of fine 

particles to improve classification at the micro-scale [5]. Optically transparent micro-

hydrocyclones have also been fabricated to enable in-situ flow visualization and particle trajectory 

tracking [4]. However, the total number of experimental reports focused on true miniaturized 

hydrocyclones remains limited, and performance data under biologically relevant conditions are 

still sparse.

In parallel, passive microfluidic systems utilizing Dean flow have shown significant potential 

for continuous and size-selective separation [7]. Dean vortices form as secondary flow in curved 

microchannels and apply lateral drag forces on suspended particles [8], [9]. This inertial focusing 

mechanism is size-dependent and allows for separation without external fields or complex 

instrumentation [10]. Spiral microchannels, in particular, have been adopted in multiple designs to 

increase throughput while maintaining the benefits of inertial migration [11]. Although Dean-

based systems have been applied to various biological targets, including mammalian cells and 

microalgae, their scalability and efficiency can be constrained by flow rate and concentration limits 

[12]. At high cell densities, reduced focusing performance emerges as a significant limitation. As 

a result, these Dean-based systems have mostly been deployed as downstream modules rather than 

as standalone units for high-throughput bioprocessing.

Despite initial progress, there remains a clear gap in the extensive evaluation and optimization 

of micro-hydrocyclones for biological applications, particularly for cases where particle or cell 

integrity must be preserved. Most available studies focus on rigid synthetic particles or simple 

suspensions, while few address the specific challenges posed by fragile, deformable biological 

clusters such as multicellular aggregates [4]. Moreover, although several studies have 



demonstrated efficient separation at high Reynolds numbers, a comprehensive quantitative 

framework investigating hydrodynamic conditions, device design, and biological performance 

metrics remains absent [13], [14]. Widespread adoption of micro-hydrocyclones in biomedical or 

cell-based manufacturing workflows will require strategies to minimize shear-induced damage, a 

deeper understanding of the deformation mechanics of biological targets that reconcile high 

separation efficiency with preservation of cellular integrity.

This work presents a comprehensive  experimental investigation of the separation efficiency 

of a modified micro-hydrocyclone using both synthetic particles and fluorescently labeled cell 

clusters. To ensure consistent spatial sampling, a motorized traverse system is developed to 

automate imaging of petri dish samples under a microscope. A custom image analysis framework 

was implemented to process large volumes of microscopy data, enabling frame-by-frame 

quantification of particle size and abundance in the overflow and underflow streams. The results 

were used to evaluate key performance metrics, including recovery to underflow and separation 

selectivity, across a range of flow rates and sample conditions. This integrated approach provides 

a comprehensive assessment of the novel microfluidic device performance and highlights its 

potential for high-throughput bioseparation in microfluidic applications.

The experimental setup used to evaluate the separation performance of the micro-

hydrocyclone for both microparticles and fluorescently stained cell clusters is shown in . 

For the particle separation experiments, a Masterflex L/S peristaltic pump (Model 7523-80, Cole-

Parmer, USA) was used to drive the suspension through the system. A pulse dampener (Cole-

Parmer, spherical, PTFE-lined) was installed downstream of the pump to attenuate flow pulsations 



typically associated with peristaltic pumping and to ensure a stable inlet profile. The particle 

suspension was continuously stirred using a magnetic stirrer (Thermo Scientific Cimarec I-Series) 

to maintain homogeneity and prevent sedimentation during sampling. The flow was directed into 

the hydrocyclone via the tangential inlet, generating a strong swirling motion that enabled 

centrifugal separation of particles by size and density. Two outlets, corresponding to the overflow 

and underflow, allowed the collection of the separated fractions for downstream analysis.

For experiments involved the cell separation, in order to prevent structural deformation of 

clusters, a syringe pump (Model PHD Ultra 70-3007, Harvard Apparatus USA) was used to deliver 

the sample at a precisely controlled volumetric flow rate. The cell suspension was also stirred 

continuously using a magnetic stirrer to prevent settling and ensure uniformity of cell distribution 

in the inlet. 

The same micro-hydrocyclone design was used for both types of experiments (particle 

separation and cell separation) to allow direct performance comparison. Following separation, the 

underflow and overflow samples were collected in separate sterile petri dishes. These samples 

were subsequently analyzed using microscopy-based image processing routines to quantify 

particle or cell cluster concentration, enabling calculation of separation efficiency and breakup of 

the cell clusters to smaller clusters or single cells.







Quantitative evaluation of separation efficiency in micro-hydrocyclone systems requires 

accurate measurement of particle or cell counts in the overflow and underflow samples. In this 

study, about 10,000 microscopy images were captured from multiple sampling events at each outlet 

to ensure statistical relevance. Given the high number of frames acquired per condition, a reliable 

and automated image analysis approach was necessary to ensure consistency and reproducibility 

across all datasets. The initial stage of image analysis involved the segmentation of particles or 

cell clusters from the background in grayscale microscopy images. The accuracy of segmentation 

directly affected all subsequent measurements, including particle count, size distribution, and 

recovery calculation. Inadequate segmentation, arising from poor contrast, background variability, 

or noise, could compromise the reliability of performance metrics, particularly in size-selective 

separation experiments.

Threshold-based binarization is a standard technique for differentiating foreground objects 

from the background in grayscale images [5]. However, global thresholding methods often 

underperform when applied to images, exhibiting non-uniform illumination and subtle contrast 

variations [4]. To overcome these limitations, adaptive binarization methods were employed, 

enabling localized threshold adjustment and improved object detection under diverse imaging 

conditions.  presents a comparison of binarization techniques used for segmenting 

particles and cell clusters in microscopy images obtained from the separation experiments. The 

raw grayscale images shown in  (a) exhibit non-uniform background intensity and low-

contrast features, which complicate threshold-based segmentation.  (b) shows different 

global binarization methods fail to consistently isolate relevant objects. High thresholds eliminate 



dimmer features (left image), while low thresholds result in background noise being misclassified 

as foreground (right image).

The green panel in  (c) displays the outcome of adaptive binarization, which applies 

a locally varying threshold across the image. This approach improves segmentation by accounting 

for spatial intensity variations, resulting in sharper object boundaries and more accurate 

discrimination of particles from the background. Consequently, adaptive binarization was selected 

for all image processing steps in the efficiency analysis to ensure robust detection and reliable 

quantification.
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outcomes. This combined evaluation provides insight into the trade‑offs between maximizing
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provides a novel avenue for translational cancer diagnostics and cell‑based research, where 
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